Search results for "Reinforcement ratio"
showing 5 items of 5 documents
On the use of digital image correlation (DIC) for evaluating the tensile behaviour of BFRCM strips
2019
Fibre Reinforced Cementitious Matrix (FRCM) composites are becoming largely adopted for retrofitting masonry structures. These materials offer several advantages in comparison to Fibre Reinforced Polymer (FRP) composites, such as good resistance to fire and high temperatures, vapour permeability, possibility to be applied on wet surfaces, higher compatibility with the masonry substrate. However, the tensile behavior of FRCM materials is more complex compared to FRP composites, due to the limited tensile strength of the cement-based matrix. For this reason, FRCM materials require appropriate tensile characterization and, in this context, the use of non-conventional measurement systems, such …
Experimental investigation on basalt grid cementitious mortar strips in tension
2018
Fibre reinforced cementitious matrix (FRCM) composite materials are currently receiving great attention for strengthening reinforced concrete and masonry structures, especially when specific preservation criteria need to be fulfilled. FRCM composites can be a convenient alternative to fibre-reinforced polymers (FRP) for their better resistance to high temperature and compatibility with stone and masonry structures. In this work an experimental study for the tensile characterization of basalt reinforced cementitious matrix (BRCM) strips is presented. Strips with one, two or three layers of grid were tested in tension to study the effect of reinforcement ratio on the tensile stress-strain res…
On the use of Digital Image Correlation (DIC) for evaluating the tensile behaviour of BFRCM strips
2019
Abstract. Fibre Reinforced Cementitious Matrix (FRCM) composites are becoming largely adopted for retrofitting masonry structures. These materials offer several advantages in comparison to Fibre Reinforced Polymer (FRP) composites, such as good resistance to fire and high temperatures, vapour permeability, possibility to be applied on wet surfaces, higher compatibility with the masonry substrate. However, the tensile behavior of FRCM materials is more complex compared to FRP composites, due to the limited tensile strength of the cement-based matrix. For this reason, FRCM materials require appropriate tensile characterization and, in this context, the use of non-conventional measurement syst…
Experimental investigation on the effectiveness of basalt-fibre strengthening systems for confining masonry elements
L’impiego di materiali compositi per il rinforzo di colonne in muratura è diventato una pratica ampiamente diffusa nel corso degli ultimi decenni. Questa tecnica, che consiste generalmente nell’applicazione di materiali polimerici fibrorinforzati (Fibre Reinforced Polymer-FRP), ha mostrato buone potenzialità, essendo in grado di garantire notevoli incrementi di resistenza e duttilità dell’elemento rinforzato, grazie ad un’azione di confinamento passivo. Tuttavia, l’impiego di compositi a matrice polimerica presenta alcuni limiti legati soprattutto alle prestazioni delle resine epossidiche, che a causa della loro natura sintetica danno luogo a problemi di compatibilità con il supporto murari…
Experimental application of digital image correlation for the tensile characterization of basalt FRCM composites
2021
Abstract Composites made with inorganic matrix, namely fabric reinforced cementitious mortar (FRCM) composites are becoming widespread as strengthening materials for existing masonry structures. These composites are made of a dry grid of fibres embedded in an inorganic matrix. FRCMs can be considered a valid alternative to traditional organic composites such as fibre reinforced polymers (FRPs) because of their better compatibility with the masonry support. This work presents an experimental study for the tensile characterization of a basalt fabric reinforced cementitious mortar (BFRCM) composite. Tensile tests were carried out on coupons reinforced with one, two or three layers of grid to i…